Hollow manganese phosphonate microspheres with hierarchical porosity for efficient adsorption and separation.

نویسندگان

  • Yun-Pei Zhu
  • Ya-Lu Liu
  • Tie-Zhen Ren
  • Zhong-Yong Yuan
چکیده

Hollow manganese phosphonate microspheres of an inorganic-organic hybrid with hierarchically porous shells were prepared through a template-free hydrothermal method using ethylene diamine tetra(methylene phosphonic acid) as the coupling molecule. The hollow structures with hierarchical porosity were confirmed by SEM, TEM and N2 sorption. FT-IR, XPS and TG-DSC measurements revealed that the organophosphonate linkers were homogeneously incorporated into the hybrid framework. The hierarchical manganese phosphonates could be used as efficient adsorbents for the removal of copper ions, showing fast binding kinetics due to the well-structured porosity. The adsorption process follows pseudo-second order reaction kinetics, as well as Langmuir isotherm, indicating that Cu(2+) was monolayer adsorbed on the hybrid by chemical complexation. Furthermore, the synthesized manganese phosphonates with peculiar porosity exhibited excellent size selectivity for protein adsorption in a complex solution, presenting the promising potential as candidates for biomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHARACTERIZATION OF MICRO/NANO POROUS HOLLOW GLASS MICROSPHERES FABRICATED THROUGH VARIOUS CHEMICAL ETCHING PROCESSE FOR USE IN SMART COATINGS

Porous hollow glass microspheres have many uses, including encapsulation of active materials. In this paper a fast and facile method for fabricating porous hollow glass-microspheres was demonstrated by etching them using dilute hydrofluoric acid. Then, a highly reactive amine was infiltrated into the etched glass microspheres. Scanning electron microscopy was conducted for the hollow glass micr...

متن کامل

Hollow mesoporous zeolite microspheres: hierarchical macro-/meso-/microporous structure and exceptionally enhanced adsorption properties.

We report the synthesis of a new kind of uniform hollow zeolite microspheres with hierarchical macro-/meso-/microporosity by an efficient strategy combining bi-templating, steam-assisted crystallization and then a mild alkaline etching method. This novel product has a hollow architecture, highly crystallized zeolite shells and more importantly, high dye adsorption capabilities.

متن کامل

pH‐Regulated Synthesis of Multi‐Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates

Multi-shelled Mn2O3 hollow microspheres have been achieved through a pH-regulated method and used as supercapacitor electrodes. The designed unique architecture allows efficient use of pseudo-capacitive Mn2O3 nanomaterials for charge storage with facilitated transport for both ions and electrons, rendering them high specific capacitance, good rate capability, and remarkable cycling performance.

متن کامل

Facile synthesis of magnetic hierarchical copper silicate hollow nanotubes for efficient adsorption and removal of hemoglobin.

This study reports the fabrication of magnetic copper silicate hierarchical hollow nanotubes, which are featured by a tailored complex wall structure and high surface area. Moreover, they exhibit excellent performance as an easily recycled adsorbent for protein separation. Particularly, this strategy can be extended as a general method to prepare other magnetic metal silicate hollow nanotubes.

متن کامل

Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst.

Organic-inorganic hybrid of cobalt phosphonate hollow nanostructured spheres were prepared in a water-ethanol system through a mild hydrothermal process in the absence of any templates using diethylenetriamine penta(methylene phosphonic acid) as bridging molecule. SEM, TEM and N2 sorption characterization confirmed a hollow spherical micromorphology with well-defined porosity. The structure and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 12  شماره 

صفحات  -

تاریخ انتشار 2014